Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2267236

ABSTRACT

The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds SARS-CoV-2 case numbers and maintain a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as Sotrovimab which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2. Graphical

2.
iScience ; 26(4): 106323, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2267237

ABSTRACT

The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.

3.
Mult Scler ; 29(7): 884-888, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2275177

ABSTRACT

OBJECTIVE: To analyze anti-SARS-CoV-2-S1-IgG levels, avidity, Omicron BA.2 variant neutralizing capacity, and SARS-CoV-2-specific T cells in anti-CD20-treated patients with multiple sclerosis (aCD20pwMS) after two, three, or four COVID-19 vaccinations. RESULTS: Frequencies of aCD20pwMS with detectable SARS-CoV-2-S1-IgG increased moderately between two (31/61 (51%)), three (31/57 (54%)), and four (17/26 (65%)) vaccinations. However, among patients with detectable SARS-CoV-2-S1-IgG, frequencies of high avidity (6/31 (19%) vs 11/17 (65%)) and Omicron neutralizing antibodies (0/10 (0%) vs 6/10 (60%)) increased strongly between two and four vaccinations. SARS-CoV-2-specific T cells were detectable in >92% after two or more vaccinations. CONCLUSION: Additional vaccinations qualitatively improve SARS-CoV-2 antibody responses.


Subject(s)
COVID-19 , Multiple Sclerosis , Humans , Immunity, Humoral , COVID-19/prevention & control , COVID-19 Vaccines , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Vaccination
4.
Immunity ; 2022.
Article in English | EuropePMC | ID: covidwho-1989998

ABSTRACT

SARS-CoV-2 infection and vaccination generates enormous host response heterogeneity and an age-dependent loss of immune response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin 21 production, and specific immunoglobulin G, depended on an intact naïve repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly. Graphical Determinants of immune response quality to SARS-CoV-2 remain poorly defined. Saggau et al. examine spike-specific naïve and memory T cells pre- and post-vaccination and track pre-existing memory T cell receptors. They define T cell parameters of high-quality vaccine responses and identify high pre-existing memory and low naïve T cell contributions as predictors of low-quality responses, particularly in the elderly.

5.
J Med Virol ; 94(12): 5780-5789, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1981883

ABSTRACT

The humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in patients with chronic inflammatory disease (CID) declines more rapidly with tumor necrosis factor-α (TNF-α) inhibition. Furthermore, the efficacy of current vaccines against Omicron variants of concern (VOC) including BA.2 is limited. Alterations within immune cell populations, changes in IgG affinity, and the ability to neutralize a pre-VOC strain and the BA.2 virus were investigated in these at-risk patients. Serum levels of anti-SARS-CoV-2 IgG, IgG avidity, and neutralizing antibodies (NA) were determined in anti-TNF-α patients (n = 10) and controls (n = 24 healthy individuals; n = 12 patients under other disease-modifying antirheumatic drugs, oDMARD) before and after the second and third vaccination by ELISA, immunoblot and live virus neutralization assay. SARS-CoV-2-specific B- and T cell subsets were analysed by multicolor flow cytometry. Six months after the second vaccination, anti-SARS-CoV-2 IgG levels, IgG avidity and anti-pre-VOC NA titres were significantly reduced in anti-TNF-α recipients compared to controls (healthy individuals: avidity: p ≤ 0.0001; NA: p = 0.0347; oDMARDs: avidity: p = 0.0012; NA: p = 0.0293). The number of plasma cells was increased in anti-TNF-α patients (Healthy individuals: p = 0.0344; oDMARDs: p = 0.0254), while the absolute number of SARS-CoV-2-specific plasma cells 7 days after 2nd vaccination were comparable. Even after a third vaccination, these patients had lower anti-BA.2 NA titres compared to both other groups. We show a reduced SARS-CoV-2 neutralizing capacity in patients under TNF-α blockade. In this cohort, the plasma cell response appears to be less specific and shows stronger bystander activation. While these effects were observable after the first two vaccinations and with older VOC, the differences in responses to BA.2 were enhanced.


Subject(s)
AIDS Vaccines , Antirheumatic Agents , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19/prevention & control , Diphtheria-Tetanus Vaccine , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Immunity , Immunoglobulin G , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha , Vaccination
7.
BMC Med ; 20(1): 31, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1643150

ABSTRACT

BACKGROUND: The humoral immune response after primary immunisation with a SARS-CoV-2 vector vaccine (AstraZeneca AZD1222, ChAdOx1 nCoV-19, Vaxzevria) followed by an mRNA vaccine boost (Pfizer/BioNTech, BNT162b2; Moderna, m-1273) was examined and compared with the antibody response after homologous vaccination schemes (AZD1222/AZD1222 or BNT162b2/BNT162b2). METHODS: Sera from 59 vaccinees were tested for anti-SARS-CoV-2 immunoglobulin G (IgG) and virus-neutralising antibodies (VNA) with three IgG assays based on (parts of) the SARS-CoV-2 spike (S)-protein as antigen, an IgG immunoblot (additionally contains the SARS-CoV-2 nucleoprotein (NP) as an antigen), a surrogate neutralisation test (sVNT), and a Vero-cell-based virus-neutralisation test (cVNT) with the B.1.1.7 variant of concern (VOC; alpha) as antigen. Investigation was done before and after heterologous (n = 30 and 42) or homologous booster vaccination (AZD1222/AZD1222, n = 8/9; BNT162b2/BNT162b2, n = 8/8). After the second immunisation, a subgroup of 26 age- and gender-matched sera (AZD1222/mRNA, n = 9; AZD1222/AZD1222, n = 9; BNT162b2/BNT162b2, n = 8) was also tested for VNA against VOC B.1.617.2 (delta) in the cVNT. The strength of IgG binding to separate SARS-CoV-2 antigens was measured by avidity. RESULTS: After the first vaccination, the prevalence of IgG directed against the (trimeric) SARS-CoV-2 S-protein and its receptor binding domain (RBD) varied from 55-95% (AZD1222) to 100% (BNT162b2), depending on the vaccine regimen and the SARS-CoV-2 antigen used. The booster vaccination resulted in 100% seroconversion and the occurrence of highly avid IgG, which is directed against the S-protein subunit 1 and the RBD, as well as VNA against VOC B.1.1.7, while anti-NP IgGs were not detected. The results of the three anti-SARS-CoV-2 IgG tests showed an excellent correlation to the VNA titres against this VOC. The agreement of cVNT and sVNT results was good. However, the sVNT seems to overestimate non- and weak B.1.1.7-neutralising titres. The anti-SARS-CoV-2 IgG concentrations and the B.1.1.7-neutralising titres were significantly higher after heterologous vaccination compared to the homologous AZD1222 scheme. If VOC B.1.617.2 was used as antigen, significantly lower VNA titres were measured in the cVNT, and three (33.3%) vector vaccine recipients had a VNA titre < 1:10. CONCLUSIONS: Heterologous SARS-CoV-2 vaccination leads to a strong antibody response with anti-SARS-CoV-2 IgG concentrations and VNA titres at a level comparable to that of a homologous BNT162b2 vaccination scheme. Irrespective of the chosen immunisation regime, highly avid IgG antibodies can be detected just 2 weeks after the second vaccine dose indicating the development of a robust humoral immunity. The reduction in the VNA titre against VOC B.1.617.2 observed in the subgroup of 26 individuals is remarkable and confirms the immune escape of the delta variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunity, Humoral , Vaccination , Vaccines, Synthetic , mRNA Vaccines
8.
Vaccines (Basel) ; 9(7)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1289040

ABSTRACT

The humoral immunity after SARS-CoV-2 infection or vaccination was examined. Convalescent sera after infection with variants of concern (VOCs: B.1.1.7, n = 10; B.1.351, n = 1) and sera from 100 vaccinees (Pfizer/BioNTech, BNT162b2, n = 33; Moderna, mRNA-1273, n = 11; AstraZeneca, ChAdOx1 nCoV-19/AZD1222, n = 56) were tested for the presence of immunoglobulin G (IgG) directed against the viral spike (S)-protein, its receptor-binding domain (RBD), the nucleoprotein (N) and for virus-neutralizing antibodies (VNA). For the latter, surrogate assays (sVNT) and a Vero-cell based neutralization test (cVNT) were used. Maturity of IgG was determined by measuring the avidity in an immunoblot (IB). Past VOC infection resulted in a broad reactivity of anti-S IgG (100%), anti-RBD IgG (100%), and anti-N IgG (91%), while latter were absent in 99% of vaccinees. Starting approximately two weeks after the first vaccine dose, anti-S IgG (75-100%) and particularly anti-RBD IgG (98-100%) were detectable. After the second dose, their titers increased and were higher than in the convalescents. The sVNT showed evidence of VNA in 91% of convalescents and in 80-100%/100% after first/second vaccine dose, respectively. After the second dose, an increase in VNA titer and IgGs of high avidity were demonstrated by cVNT and IB, respectively. Re-vaccination contributes to a more robust immune response.

9.
Science ; 373(6551)2021 07 09.
Article in English | MEDLINE | ID: covidwho-1243685

ABSTRACT

Two elementary parameters for quantifying viral infection and shedding are viral load and whether samples yield a replicating virus isolate in cell culture. We examined 25,381 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Germany, including 6110 from test centers attended by presymptomatic, asymptomatic, and mildly symptomatic (PAMS) subjects, 9519 who were hospitalized, and 1533 B.1.1.7 lineage infections. The viral load of the youngest subjects was lower than that of the older subjects by 0.5 (or fewer) log10 units, and they displayed an estimated ~78% of the peak cell culture replication probability; in part this was due to smaller swab sizes and unlikely to be clinically relevant. Viral loads above 109 copies per swab were found in 8% of subjects, one-third of whom were PAMS, with a mean age of 37.6 years. We estimate 4.3 days from onset of shedding to peak viral load (108.1 RNA copies per swab) and peak cell culture isolation probability (0.75). B.1.1.7 subjects had mean log10 viral load 1.05 higher than that of non-B.1.1.7 subjects, and the estimated cell culture replication probability of B.1.1.7 subjects was higher by a factor of 2.6.


Subject(s)
Asymptomatic Infections , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/physiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Caco-2 Cells , Child , Child, Preschool , Female , Germany , Hospitalization , Humans , Infant , Male , Middle Aged , Probability , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Viral Load , Virus Replication , Virus Shedding , Young Adult
10.
Viruses ; 13(5)2021 04 29.
Article in English | MEDLINE | ID: covidwho-1217117

ABSTRACT

The availability of simple SARS-CoV-2 detection methods is crucial to contain the COVID-19 pandemic. This study examined whether a commercial LAMP assay can reliably detect SARS-CoV-2 genomes directly in respiratory samples without having to extract nucleic acids (NA) beforehand. Nasopharyngeal swabs (NPS, n = 220) were tested by real-time reverse transcription (RT)-PCR and with the LAMP assay. For RT-PCR, NA were investigated. For LAMP, NA from 26 NPS in viral transport medium (VTM) were tested. The other 194 NPS were analyzed directly without prior NA extraction (140 samples in VTM; 54 dry swab samples stirred in phosphate buffered saline). Ten NPS were tested directly by LAMP using a sous-vide cooking unit. The isothermal assay demonstrated excellent specificity (100%) but moderate sensitivity (68.8%), with a positive predictive value of 1 and a negative predictive value of 0.65 for direct testing of NPS in VTM. The use of dry swabs, even without NA extraction, improved the analytical sensitivity; up to 6% of samples showed signs of inhibition. LAMP could be performed successfully with a sous-vide cooking unit. This technique is very fast, requires little laboratory resources, and can replace rapid antigen tests or verify reactive rapid tests on-site.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , DNA, Viral/analysis , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/isolation & purification , Humans , Sensitivity and Specificity , Specimen Handling
11.
Lancet Microbe ; 2(7): e311-e319, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171807

ABSTRACT

BACKGROUND: Antigen point-of-care tests (AgPOCTs) can accelerate SARS-CoV-2 testing. As some AgPOCTs have become available, interest is growing in their utility and performance. Here we aimed to compare the analytical sensitivity and specificity of seven commercially available AgPOCT devices. METHODS: In a single-centre, laboratory evaluation study, we compared AgPOCT products from seven suppliers: the Abbott Panbio COVID-19 Ag Rapid Test, the RapiGEN BIOCREDIT COVID-19 Ag, the Healgen Coronavirus Ag Rapid Test Cassette (Swab), the Coris BioConcept COVID-19 Ag Respi-Strip, the R-Biopharm RIDA QUICK SARS-CoV-2 Antigen, the nal von minden NADAL COVID-19 Ag Test, and the Roche-SD Biosensor SARS-CoV Rapid Antigen Test. Tests were evaluated on recombinant SARS-CoV-2 nucleoprotein, cultured endemic and emerging coronaviruses, stored respiratory samples with known SARS-CoV-2 viral loads, stored samples from patients with respiratory pathogens other than SARS-CoV-2, and self-sampled swabs from healthy volunteers. We estimated analytical sensitivity in terms of approximate viral concentrations (quantified by real-time RT-PCR) that yielded positive AgPOCT results, and specificity in terms of propensity to generate false-positive results. FINDINGS: In 138 clinical samples with quantified SARS-CoV-2 viral load, the 95% limit of detection (concentration at which 95% of test results were positive) in six of seven AgPOCT products ranged between 2·07 × 106 and 2·86 × 107 copies per swab, with an outlier (RapiGEN) at 1·57 × 1010 copies per swab. The assays showed no cross-reactivity towards cell culture or tissue culture supernatants containing any of the four endemic human coronaviruses (HCoV­229E, HCoV­NL63, HCoV­OC43, or HCoV­HKU1) or MERS-CoV, with the exception of the Healgen assay in one repeat test on HCoV-HKU1 supernatant. SARS-CoV was cross-detected by all assays. Cumulative specificities among stored clinical samples with non-SARS-CoV-2 infections (n=100) and self-samples from healthy volunteers (n=35; cumulative sample n=135) ranged between 98·5% (95% CI 94·2-99·7) and 100·0% (97·2-100·0) in five products, with two outliers at 94·8% (89·2-97·7; R-Biopharm) and 88·9% (82·1-93·4; Healgen). False-positive results did not appear to be associated with any specific respiratory pathogen. INTERPRETATION: The sensitivity range of most AgPOCTs overlaps with SARS-CoV-2 viral loads typically observed in the first week of symptoms, which marks the infectious period in most patients. The AgPOCTs with limit of detections that approximate virus concentrations at which patients are infectious might enable shortcuts in decision making in various areas of health care and public health. FUNDING: EU's Horizon 2020 research and innovation programme, German Ministry of Research, German Federal Ministry for Economic Affairs and Energy, German Ministry of Health, and Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19 Testing , Humans , Point-of-Care Systems , SARS-CoV-2/genetics
12.
Microorganisms ; 9(1)2020 Dec 28.
Article in English | MEDLINE | ID: covidwho-1084114

ABSTRACT

The rapid detection of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is necessary in the ongoing pandemic. Antigen-specific point-of-care tests (POCT) may be useful for this purpose. Here, such a POCT (SARS-CoV-2 NADAL® COVID-19 Ag) was compared to a laboratory-developed triplex real-time polymerase chain reaction (RT-PCR) designed for the detection of viral nucleoprotein gene and two control targets. This RT-PCR served as a reference to investigate POCT sensitivity by re-testing upper respiratory tract (URT) samples (n = 124) exhibiting different SARS-CoV-2 loads in terms of RT-PCR threshold cycle (Ct) values. The optical intensities of the antigen bands were compared to the Ct values of the RT-PCR. The infectivity of various virus loads was estimated by inoculating Vero cells with URT samples (n = 64, Ct 17-34). POCT sensitivity varied from 100% (Ct < 25) to 73.1% (Ct ≤ 30); higher SARS-CoV-2 loads correlated with higher band intensities. All samples with a Ct > 30 were negative; among SARS-CoV-2 free samples (n = 10) no false-positives were detected. A head-to-head comparison with another POCT (Abbott, Panbio™ COVID-19 Ag Rapid Test) yielded similar results. Isolation of SARS-CoV-2 in cell-culture was successful up to a Ct value of 29. The POCT reliably detects high SARS-CoV-2 loads and rapidly identifies infectious individuals.

13.
Microorganisms ; 9(1):58, 2021.
Article in English | ScienceDirect | ID: covidwho-984854

ABSTRACT

The rapid detection of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is necessary in the ongoing pandemic. Antigen-specific point-of-care tests (POCT) may be useful for this purpose. Here, such a POCT (SARS-CoV-2 NADAL®COVID-19 Ag) was compared to a laboratory-developed triplex real-time polymerase chain reaction (RT-PCR) designed for the detection of viral nucleoprotein gene and two control targets. This RT-PCR served as a reference to investigate POCT sensitivity by re-testing upper respiratory tract (URT) samples (n = 124) exhibiting different SARS-CoV-2 loads in terms of RT-PCR threshold cycle (Ct) values. The optical intensities of the antigen bands were compared to the Ct values of the RT-PCR. The infectivity of various virus loads was estimated by inoculating Vero cells with URT samples (n = 64, Ct 17-34). POCT sensitivity varied from 100% (Ct <25) to 73.1% (Ct ≤30);higher SARS-CoV-2 loads correlated with higher band intensities. All samples with a Ct >30 were negative;among SARS-CoV-2 free samples (n = 10) no false-positives were detected. A head-to-head comparison with another POCT (Abbott, Panbio™COVID-19 Ag Rapid Test) yielded similar results. Isolation of SARS-CoV-2 in cell-culture was successful up to a Ct value of 29. The POCT reliably detects high SARS-CoV-2 loads and rapidly identifies infectious individuals.

14.
Microorganisms ; 8(10):1572, 2020.
Article in English | MDPI | ID: covidwho-847649

ABSTRACT

Kinetics of neutralizing antibodies and immunoglobulin G (IgG) against the nucleo (N) or spike (S) proteins of severe acute respiratory syndrome coronavirus type2 (SARS-CoV-2) were studied in patients up to 165 days after PCR diagnosis of infection. Two immunoassays were selected out of eight IgG or total antibody tests by comparing their specificities and sensitivities. Sensitivities were calculated with convalescent sera from 26 PCR-confirmed cases, of which 76.9% had neutralizing antibodies (>1:10). Stored sera collected during the summer 2018 (N = 50) and winter seasons 2018/2019 (N = 50) were included to demonstrate the test specificities. IgG kinetics, avidities, and virus-neutralizing capacities were recorded over up to 165 days in eleven patients and five individuals from routine diagnostics. Sensitivities, specificities, and diagnostic accuracies ranged between 80.8–96.3%, 96.0–100%, and 93.7–99.2%, respectively. Nearly all results were confirmed with two different SARS-CoV-2-specific immunoblots. Six (54.4%) patients exhibited stable N-specific IgG indices over 120 days and longer;three of them developed IgG of high avidity. The S-specific IgG response was stable in ten (91.0%) patients, and eight (72.7%) had neutralizing antibodies. However, the titers were relatively low, suggesting that sustained humoral immunity is uncertain, especially after outpatient SARS-CoV-2 infection.

15.
Eur J Clin Microbiol Infect Dis ; 39(8): 1581-1592, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-381926

ABSTRACT

Respiratory tract infections (RTI) can take a serious course under immunosuppression. Data on the impact of the underlying pathogens are still controversial. Samples from the upper (n = 322) and lower RT (n = 169) were collected from 136 children and 355 adults; 225 among them have been immunocompromised patients. Exclusion criteria were presence of relevant cultivable microorganisms, C-reactive protein > 20 mg/dl, or procalcitonin > 2.0 ng/ml. Samples were tested by PCR for the presence of herpesviruses (HSV-1/-2; VZV; CMV; HHV6; EBV), adenoviruses, bocaviruses, entero-/rhinoviruses (HRV), parechoviruses, coronaviruses, influenza viruses (IV), parainfluenza viruses as well as for pneumoviruses (HMPV and RSV), and atypical bacteria (Mycoplasma pneumoniae, M.p.; Chlamydia pneumoniae, C.p.). Viral/bacterial genome equivalents were detected in more than two-thirds of specimens. Under immunosuppression, herpesviruses (EBV 30.9%/14.6%, p < 0.001; CMV 19.6%/7.9%, p < 0.001; HSV-1: 14.2%/7.1%, p = 0.012) were frequently observed, mainly through their reactivation in adults. Immunocompromised adults tended to present a higher RSV prevalence (6.4%/2.4%, p = 0.078). Immunocompetent patients were more frequently tested positive for IV (15.0%/5.8%, p = 0.001) and M.p. (6.4%/0.4%, p < 0.001), probably biased due to the influenza pandemic of 2009 and an M.p. epidemic in 2011. About 41.8% of samples were positive for a single pathogen, and among them EBV (19.9%) was most prevalent followed by HRV (18.2%) and IV (16.6%). HSV-2 and C.p. were not found. Marked seasonal effects were observed for HRV, IV, and RSV. Differences in pathogen prevalence were demonstrated between immunocompetent and immunocompromised patients. The exact contribution of some herpesviruses to the development of RTI remains unclear.


Subject(s)
Immunocompromised Host , Respiratory Tract Infections/epidemiology , Adult , Bacteria/genetics , Bacteria/isolation & purification , Child , Cohort Studies , Female , Germany/epidemiology , Humans , Male , Middle Aged , Polymerase Chain Reaction , Prevalence , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Viruses/genetics , Viruses/isolation & purification
16.
APMIS ; 128(6): 451-462, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-155071

ABSTRACT

Bacteria and viruses were analysed in the upper respiratory tract of symptomatic pig farmers and their domestic pigs. Eighty six human nasal and 495 (50 pools) porcine snout swabs were collected in Schleswig-Holstein, Germany. Staphylococcus (S.) aureus (62.8%, 54/86), human rhino- and coronaviruses (HRV, 29.1%, 25/86; HCoV, 16.3%, 14/86) were frequently detected in humans, while Haemophilus parasuis (90.0%, 45/50), Mycoplasma hyorhinis (78.6%, 11/14), Enterovirus G (EV-G, 56.0%, 28/50) and S. aureus (36.0%, 18/50), respectively, were highly prevalent in pigs. The detection of S. aureus in human follow-up samples indicates a carrier status. The methicillin-resistant phenotype (MRSA) was identified in 33.3% (18/54) of nasal swabs and in one of 18 (5.6%) pooled snout swabs that were tested positive for S. aureus. Strains were indicative of the livestock-associated clonal complex CC398, with t011 being the most common staphylococcal protein A type. Enterobacterales and non-fermenters were frequently isolated from swabs. Their detection in follow-up samples suggests a carrier status. All were classified as being non-multiresistant. There was no example for cross-species transmission of viruses. In contrast, transmission of S. aureus through occupational contact to pigs seems possible. The study contributes to the 'One Health' approach.


Subject(s)
Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Staphylococcal Infections/veterinary , Sus scrofa/microbiology , Sus scrofa/virology , Swine Diseases/epidemiology , Animals , Carrier State , Humans , Livestock , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Nasal Mucosa/microbiology , Nasal Mucosa/virology , Occupational Diseases/microbiology , Prevalence , Respiratory Tract Infections/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/transmission , Swine , Swine Diseases/microbiology , Swine Diseases/transmission , Swine Diseases/virology , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL